Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
J Pharm Biomed Anal ; 234: 115525, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37320973

RESUMO

Gas chromatography-mass spectrometry (GC-MS) is the first choice for law enforcement agencies in various countries to analyze new psychoactive substances (NPS) because of its advantages and complete databases. For synthetic cathinone-type NPS (SCat), alkalization and extraction processes before GC-MS analysis are essential. However, the base form of SCat is unstable, causing it to quickly degrade in solution and cause pyrolysis at the GC-MS injection inlet. In this study, we investigated the degradation of ethyl acetate and pyrolysis at the GC-MS injection inlet of 2-fluoromethcathinone (2-FMC), the most unstable SCat. Using gas chromatography-quadruple/time-of-flight mass spectrometry (GC-Q/TOF-MS) combined with the predicted data from theoretical calculations and the analysis of mass spectrometry (MS) fragmentation, the structures of 15 2-FMC degradation and pyrolysis products were identified. Among them, 11 products were produced during degradation, and six products were obtained from pyrolysis (two of which were the same as the degradation products). At the same time, the degradation and pyrolysis pathways of 2-FMC were provided. The balance between keto-enol and enamine-imine tautomerism triggered the primary degradation pathway of 2-FMC. The subsequent degradation started from the tautomer with a hydroxyimine structure, including imine hydrolysis, oxidation, imine-enamine tautomerism, intramolecular ammonolysis of halobenzene, and hydration to generate a series of degradation products. The secondary degradation reaction was the ammonolysis of ethyl acetate to yield N-[1-(2'-fluorophenyl)-1-oxopropan-2-yl]-N-methylacetamide and the byproduct, N-[1-(2'-fluorophenyl)-1-oxopropan-2-yl]-N-methylformamide. In the pyrolysis of 2-FMC, the major reactions were dehydrogenation, intramolecular ammonolysis of halobenzene, and defluoromethane. The achievements of this manuscript not only study 2-FMC degradation and pyrolysis but also lay the foundation for the study of SCat stability and their accurate analysis by GC-MS.


Assuntos
Hidrocarbonetos Halogenados , Pirólise , Cromatografia Gasosa-Espectrometria de Massas/métodos , Espectrometria de Massas/métodos , Iminas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...